PHOTOCHEMICAL RING OPENING OF BARBITAL

Henryk Bartoń, Jacek Bojarski and Jerzy Mokrosz Department of Organic Chemistry, School of Medicine 30-048 Kraków, Poland

Abstract: Photolysis of barbital yields derivatives of urea and biuret.

The mechanism of ring opening involves an isocyanate intermediate.

Otsuji et al. 1 found that the UV irradiation /254 nm/ of barbital 1 /5,5-di-ethyl-2,4,6(1H,3H,5H)-pyrimidinetrione/ in an aqueous alkaline medium yields 2-ethylbutanoylurea 2. When the aqueous solution of 1 was irradiated in the presence of dimethylamine, a mixture of 2 and N,N-dimethylbiuret 3 was obtained. This first reaction was explained in terms of photochemical hydrolysis of 1 with the ring opening in 1-6 position. The singlet excited state, tetrahedral complex with the OH ion and 2-allophanoyl-2-ethylbutanoic acid were postulated as intermediate products. The formation of 3 was not elucidated in terms of this mechanism.

We investigated the photolysis of <u>1</u> under the similar conditions and additionally in 96% and absolute ethanol solutions in the presence of ammonia or amines. The products had the structure of 2-ethylbutanoyl derivatives of urea or biuret /Table 1/.

Table 1: Reaction conditions and products of photolysis of barbital²

E t2CHCCNHC CNH-R						
	Medium	Reagent	Time h	R	mp ⁸	Yield
2	carbonate buffer pH 10	н ₂ с	2	Н	209–211 ⁰	68
<u>4</u>	absolute EtOH	NH ₃	6	CONHS	172 -1 73 ⁰	62
2	absolute EtOH + Et ₃ N	EtCH	2.5	COCEt	108-112 ⁰	26
<u>6</u>	96% EtOH	${\rm Me_2}{ m NH}$	1.5	COMMe ₂	133 - 135 ⁰	56
Z	96% EtCH	/CH ₂ / ₅ NH	2.5	CON/CH ₂ / ₅	114-115°	66

a uncorrected, for compounds <u>4-7</u> after crystallization from EtCH/H₂C These results can be explained assuming the ring opening in 4-5 position,

the formation of an intermediate of the isocyanate type and a subsequent attack of the nucleophilic reagent:

$$\begin{array}{c|c}
C & H & C \\
Et & N & C
\end{array}$$

$$\begin{array}{c|c}
C & H & C
\end{array}$$

$$\begin{array}{c|c}
C & H & C
\end{array}$$

$$\begin{array}{c|c}
Et & H & N = C = C
\end{array}$$

$$\begin{array}{c|c}
Et & H & N + C - X
\end{array}$$

X = CH /with subsequent decarboxylation/, NH_2 , OEt, NMe_2 , $N/CH_2/5$

Photochemical formation of the isocyanate group from =N-CC- moiety was recently reported in the literature and is additionally supported by the formation of 2249 cm⁻¹ IR absorption peak during the UV irradiation /254 nm/ of sodium salt of barbital in the nujcl suspension. The formation of 2 reported by Ctsuji et al. can be easily explained by the alkaline hydrolysis of $\underline{6}$ under the experimental conditions employed /alkaline medium, $\underline{60}$ h irradiation time/.

The ring opening of $\underline{1}$ at the ionized side of the ring is suggested by the results of photolysis of N-methylbarbital in the aqueous alkaline medium. This compound reacts ca. 10 times slower than $\underline{1}$ under the similar conditions and yields the mixture of N-(2-ethylbutanoyl)-N-methylurea $\underline{8}$ and 5,5-diethyl-3-methylydantoin $\underline{9}^2$:

This last compound evidences a new pathway, i.e. a contraction of the ring, in the photodegradation of barbituric acids. The details of this process are under investigation.

References and Notes:

- 1. Y. Otsuji, T. Kuroda, E. Imoto, Bull. Chem. Soc. Japan, 41, 2713 /1968/.
- 2. Satisfactory elemental analyses were obtained for all new compounds. Spectral data /IR in CCl₄. ¹H-NMR in CDCl₃/: <u>4</u> NMR 0.81 /6H, t, J=7/, 2.28 /1H, m/, 6.0-7.4 /2H, bd/, 9.25 /1H, bs/, 10.38 /1H, bs/; <u>5</u> IR 1798 cm⁻¹ C=00Et, 3160, 3230 cm⁻¹ NH; <u>6</u> IR 1766 cm⁻¹ C=0NMe₂, 3130, 3210, 3270 cm⁻¹ NH; <u>7</u> IR 1764 cm⁻¹ C=CN/CH₂/₅, 3150, 3200, 3260 cm⁻¹ /broad/ NH; <u>8</u> mp 91-94° /cyclohexane/, IR 1674, 1714 cm⁻¹ C=C, 3302, 3502 /free/ cm⁻¹ NH; <u>9</u> mp 60-62° /CCl₄/, NMR 0.86 /6H, t, J=7/, 1.5-2.0 /4H, m/, 3.0 /3H, s/, 7.1 /1H, bs/, IR 1721, 1784 cm⁻¹ C=C, 3100, 3230, 3460 /free/ cm⁻¹ NH.
- 3. T. Nishio, K. Katahira, A. Kato, C. Kashima, Y. Cmote, Tetrahedron Lett., 4211 /1979/; 5. Cánovas, J. Fonrodona, J.-J. Bonet, M.C. Briansó, J.L. Briansó, Helv. Chim. Acta, 63, 2380 /1980/; B.J. Swanson, G.C. Crockett, T.H. Koch, J. Org. Chem., 46, 1082 /1981/.